WORCESTER COUNTY DEPARTMENT OF PUBLIC WORKS WATER & WASTEWATER DIVISION 1000 SHORE LANE BERLIN MD 21811

U.S. POSTAGE PAID SNOW HILL, MD PERMIT NO. 20 21863

IMPORTANT NOTICE

Consumer Confidence Report

EDGEWATER ACRES/ NANTUCKET POINT SERVICE AREA 2009 ANNUAL DRINKING WATER QUALITY REPORT

INTRODUCTION

The Water & Wastewater Division of the Worcester County Department of Public Works is

responsible for the provision of the safest possible drinking water to its customers in the Nantucket Point Service Area. During the period from January 1 to December 31, 2008, we conducted tests for drinking water contaminants and tested at least once every month for Total Coliform and Fecal Coliform Bacteria as required by Federal and State law. We detected several contaminants and all were found to be significantly below established standards.

This brochure is a snapshot of the quality of the water that was provided to you in 2008. Included are details about the source of your water, what your water contains, and how your water compares with the standards established by the Environmental Protection Agency (EPA) and the Maryland Department of the Environment (MDE). If you have any questions about this report or need additional information concerning the drinking water being supplied to you, please call Gary Serman at 410-641-5251, extension 115, between 7:30 a.m. and 4:00 p.m. any weekday.

OUR WATER IS SAFE, HOWEVER

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-

compromised persons such as persons with cancer who are undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risks of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

SOURCE OF WATER

We purchased water from Artesian Water Company of Delaware in 2006 and we were

supplied by both their South Bethany and Bayville water plants.

INFORMATION

While we do not have regularly scheduled meetings with your community, our personnel are

available to answer any questions that you may have or to provide information concerning the operation of the water treatment system. To contact us, you can call Gary Serman at 410-641-5251, extension 115, or you can write to us at

GENERAL

1000 Shore Lane, Berlin, Maryland 21811.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in the water before we treat it include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wild life.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture and residential uses.
- Radioactive contaminants, which are naturallyoccurring.
- Organic chemical contaminants, including synthetic and volatile chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic tanks.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791).

EDGEWATER ACRES/ NANTUCKET POINT SERVICE AREA WATER QUALITY DATA

The table below lists all the drinking water contaminants that we detected during the 2008 calendar year. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done January 1-December 31, 2008. The state requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old.

- Terms & abbreviations used below

 Maximum Contaminant Level (MCLG): the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

 Maximum Contaminant Level (MCL): the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment beforeholdsy.

 Action Level (AL): the concentration of a contaminant which, when exceeded, triggers treatment or other requirements which a water system must follow.

 ppb: parts per billion or micrograms per liter ppm. parts per million or milligrams per liter pC/1: piccouries per liter (a measure of radiation)

		Highest	Ideal				
	Unit of	Level	Goal	Highest Level	Annual	Major	
	Measure	Allowed	(MCLG)	Detected	Range	Sources	
		(MCL)					
Inorganic Contaminants							
Barium	ppb	2000	2000 ⁷	34	13 - 34	Erosion of natural deposits.	
Fluoride	ppm	2	27	1.3	0.2 - 1.3	Erosion of natural deposits. Water additive that promotes strong teeth.	
Turbidity ¹	ntu	5	1	1	nd – 1	Soil runoff.	
Disinfection/Disinfection By- products	**************************************						
Chlorine (free and total)	ppm	4 (MRDL)	4 (MRDLG) ⁶	2.5	nd - 2.5	Disinfectant used in drinking water industry.	
Haloacetic Acids, total3	ppb	60	0	30.4	12 - 30.44	By-product of drinking water chlorination.	
Dibromoacetic Acid	ppb	n/r		1.9	nd - 1.9		
Dichloroacetic Acid	ppb	n/r		23.2	1.2 - 23.2		
Monochloroacetic Acid	ppb	n/r		4.2	nd - 4.2		
Trichloroacetic Acid	ppb	n/r		22.7	11 - 22.7		
Trihalomethanes, total ³	ppb	80	0	69	nd – 75 ⁴	By-product of drinking water chlorination.	
Bromodichloromethane	ppb	n/r		24	nd – 24		
Bromoform	ppb	n/r		0.6	nd – 0.6		
Chloroform	ppb	n/r		57.6	nd – 57.6		
Dibromochloromethane	ppb	n/r		9.5	nd – 9.5		
Organic Contaminants							
Di(ethylhexyl)phthalate	ppb	6	0	0.1	n/a	Discharge from chemical factories.	
Unregulated Contaminants							
Acetone	ppb	n/r		22	nd - 22		
Alkalinity, total	ppm-	n/r		182	86 - 182		
Carbon dioxide, free	ppm	n/r		11.8	9.2 - 11.8		
Chloride	ppm	n/r	250	28.3	18.4 - 28.3		
Color, apparent	color units	n/r	15	15	nd - 15		
Conductivity	umhos	n/r		282	182 - 282		
Diethylphthalate	dad	n/r		0.3	n/a		

Di-n-butylphthalate	ppb	n/r		0.1	nd - 0.1				
Hardness, calcium	ppm	n/r		110	56 - 110				
Hardness, total	ppm	n/r		121	90 – 121				
ron	ppb	n/r	300	350	nd - 350				
Manganese	ppb	n/r	50	80	7 - 80				
oH, Field	0 - 14 scale	n/r	6.5 - 8.5	9.0	6.6 - 9.0				
Phosphate, total	ppm	n/r		0.2	0.1 - 0.2				
Sodium	ppm	n/r		44.3	18.9 - 44.3				
Solids, total dissolved	ppm	n/r	500	271	186 - 271		***************************************		
Sufate	ppm	n/r	250	0.3	nd - 0.3				Manufacture Communication Comm
Surfactants, MBAS	ppb	n/r	500	40	na				
Zinc	ppb	n/r	5000	5	nd-5	1			
Lead & Copper ²							0001949		Market Comment
90th Percentile Lead (2006 Data)	ppm	15	0	0.008		Corrosion of househo	ld plumbing systems.	Erosion of natural deposit	S.
90th Percentile Copper (2006 Data)	ppm	1.3	1.3	0.16				Erosion of natural deposit	
Microbiological Contaminants								W. W. J	
Total Coliform									
-lighest number of positive samples n any one month		One sample per month was collected by Worcester County personel on the Maryland portion of the water distribution system and all samples were negative. However in the Delaware portion of the water distribution system one sample was positive in September 2008. (all resamples were absent for bacteria). Negative results in all remaining monthly samples collected. 10 samples per month were collected.				Naturally present in the environment.			
This MCL applies only to surface water									T
Under the Lead and Copper Rule, we	sample for these	contaminants on	ce every 3 years	i.					

Inorganic Contaminants	Synthetic Organic Contamir	nants (Pesticides and Herbicides)	Volatile Organic Contaminants		
Aluminum	2,4,5-TP (Silvex)	Diethylphthalate	1.1.1.2-Tetrachloroethane Chloroethane		
Antimony	2.4-D	Dimethyl phthalate	1,1,1-Trichloroethane	Chloromethane	
Arsenic	3-Hydroxycarbofuran	Di-n-octyl phthalate	1,1,2,2-Tetrachloroethane	cis-1,2-Dichloroethene	
Beryllium	4.4'-DDD	Dinoseb	1,1,2-Trichloroethane	cis-1,3-Dichloropropene	
Cadmium	4.4'-DDE	Endosulfan I	1.1-Dichloroethane	Dibromomethane	
Chromium	4.4'-DDT	Endosulfan II	1.1-Dichloroethene	Dichlorodifluoromethane	
Cvanide	Acenaphthene	Endosulfan sulfate	1,1-Dichloropropene	Ethyl methacrylate	
Mercury	Acenaphthylene	Endrin	1.2.3-Trichlorobenzene	Ethylbenzene	
Nickel	Alachlor	Endrin aldehyde	1,2,3-Trichloropropane	Hexachlorobutadiene	
Nitrite	Aldicarb	Ethylene Dibromide	1,2,4-Trichlorobenzene	lodomethane	
Odor (Threshold Odor)	Aldicarb Sulfone	Fluoranthene	1,2,4-Trichlorobenzene	Isopropylbenzene	
Selenium	Aldicarb Sulfoxide	Fluorene	1,2,4-11inethylbenzene	m.p-Xvlene	
Silver	Aldrin	gamma-Chlordane	1,2-Dichlorobenzene		
Thallium	alpha-BHC	Heptachlor		Methyl Isobutyl Ketone (MIBK)	
manum	alpha-Chlordane		1,2-Dichloropropane	Methyl methacrylate	
	Anthracene	Heptachlor Epoxide	1,3,5-Trimethylbenzene	Methyl-t-butyl ether (MTBE)	
		Hexachlorobenzene	1,3-Dichlorobenzene	Naphthalene	
	Atrazine	Hexachlorocyclopentadiene	1,3-Dichloropropane	n-Butylbenzene	
	Benzo(a)anthracene	Indeno(1,2,3-cd)pyrene	2,2-Dichloropropane	n-Propylbenzene	
	Benzo(a)pyrene	Lindane	2-Butanone (MEK)	o-Xylene	
	Benzo(b)fluoranthene	Methomyl	2-Chloroethylvinyl Ether	para-Dichlorobenzene	
	Benzo(g,h,i)perylene	Methoxychlor	2-Chlorotoluene	sec-Butylbenzene	
	Benzo(k)fluoranthene	Metolachlor	2-Hexanone	Styrene	
	beta_BHC	Metribuzin	3-chloro-1-propene	tert-Butylbenzene	
	bis(2-chloroethyl) ether (BCEE)	Oxamyl (Vydate)	4-Chlorotoluene	Tetrachloroethene	
	Butachlor	PCBs	4-Isopropyltoluene	Tetrahydrafuran (THF)	
Disinfection By-products	 Butylbenzylphthalate 	Pentachlorophenol	Acrylonitrile	Toluene	
Monobromoacetic Acid	Carbaryl	Phenanthrene	Benzene	tr-1,2-Dichloroethene	
romoform	Carbofuran	Picloram	Bromobenzene	tr-1,3-Dichloropropene	
TOTHOIOTH	Chlordane	Propachlor	Bromochloromethane	trans-1,4-Dichlorobutene	
	Chyrsene	Pyrene	Bromomethane	Trichloroethene	
	Dalapon	Simazine	Carbon Disulfide	Trichlorofluoromethane	
	delta-BHC	Toxaphene	Carbon Tetrachloride	Vinyl acetate	
	Di(ethylhexyl)adipate	Trifluralin	Chlorobenzene	Vinyl chloride	
	Dibenzo(a,h)anthracene			Xylenes, total	
	Dibromochloropropane				
	Dicamba				
	Dieldrin		1		